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Abstract
In this paper we study the properties of the solutions to the Cauchy problem

(1) (uee — Au)g, = f(u) +g(lz]), t€0,1],2€R?,

(2) u(l,z) =up € HY(R?), w(1,2) =u; € L*(R?),

where g5 is the Reissner-Nordstrom metric (see [2]); f € CH(R'), f(0) = 0, alu] <
f'(u) < blul, g € C(RT), g(|z|) > 0, g(|z|) = 0 for |z| > 71, a and b are positive
constants, r; > 0 is suitable chosen.

When g(r) = 0 we prove that the Cauchy problem (1), (2) has a nontrivial solution
u(t,r) in the form u(t,r) = v(t)w(r) € C((0,1]H(RT)), where = ||, and the solution
map is not uniformly continuous.

When g(r) # 0 we prove that the Cauchy problem (1), (2) has a nontrivial solution
u(t,r) in the form u(t,r) = v(t)w(r) € C((0,1]H'(R*)), where r = |z|, and the solution
map is not uniformly continuous.

Subject classification: Primary 35L10, Secondary 35L50.

1. Introduction

In this paper we study the properties of the solutions to the Cachy problem

(1) (unr = Au)g, = f(u) +g(|z]), t€0,1],2 € R,

(2) u(l,z) =ug € H(R?), w(l,z) =uy € L*(R?),
where g; is the Reissner-Nordstrom metric (see [2])

g _T2—K7“—|—Q2dt2_ r?

s = )2 T KO dr? — r?d¢* — r? sin® ¢db?,
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K and Q are positive constants, f € C1(R!), f(0) = 0, alu| < f'(u) < blu|, g € C(RT),
g(|z|) >0, g(|z|) = 0 for |x| > r1, a and b are positive constants, r; > 0 is suitable chosen.
The Cauchy problem (1), (2) we may rewrite in the form

(1)
r2 1 5 9
r2— Kr+ QQUtt_r_zar((r —Kr+Q%)u;) -

1
8¢(sin ¢U¢) — W“@G = f(U)—i-g(?“),

n® ¢

r2sin ¢

(2) uw(l,r,¢,0) =ug € H (R x[0,27]x[0, 7)), us (1,7, ¢,60) = uy € L>(RT %[0, 27]x[0,7]).

When g5 is the Minkowski metric; ug,u1 € C5°(R?) in [5](see and [1], section 6.3) is
proved that there exists 7 > 0 and a unique local solution u € C%([0,7) x R3) for the
Cauchy problem

(ug — Au)g, = f(u), fe€C*(R), tel0,T),xz€ R,

u’t:O = anut‘t:O = ui,

for which

sup |u(t,x)| = oo.
t<T,x€R3

When g, is the Minkowski metric, 1 < p < 5 and initial data are in C§°(R?), in [5](see
and [1], section 6.3) is proved that the initial value problem

uy — Au),, = ululP™t, te[0,T],z € R3,
9s

U|t=0 = anUt|t=0 = Uy,

admits a global smooth solution.

When g5 is the Minkowski metric and initial data are in C§°(R?3), in [4](see and [1],
section 6.3) is proved that there exists a number ¢y > 0 such that for any data (up,u;1) €
Ce°(R?) with E(u(0)) < €, the initial value problem

(ugr — Au)g, = uw’, tel0,T),zeR3,

U|t=0 = anUt|t=0 = Uy,

admits a global smooth solution.
When g, is the Minkowski metric in [6] is proved that the Cauchy problem

(u — Au)g, = f(u), te€[0,1],z € R3,

u(l,z) =ug, u(l,z) =uq,

has global solution. Here f € C2(R), f(0) = f'(0) = f"(0) =0,

" (u) = f"(v)] < Blu— |
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for [u <1, v <1, B>0,v2-1<q <1, up € C3(R?), us € CHR3), up(x) = uy(x) =0
for |z — xo| > p, ¢ and p are suitable chosen.

When g; is the Reissner - Nordstrém metric, n =3, p > 1, ¢ > 1, v € (0,1) are fixed
constants, f € CL(RY), f(0) =0, a|u| < f'(u) < blu|, g € C(RT), g(|z|) >0, g(|z|) = 0 for
|z| > r1, a and b are positive constants, r; > 0 is suitable chosen, in [7] is proved that the
initial value problem (1), (2), has nontrivial solution u € C((0, 1]B;’q(7€+)) in the form

ult T)_{v(t)w(r) for r<ry, tel0,1],
" 0 for r>1, te]0,1]

where r = |z|, for which lim;__¢ ||u||B;”q(R+) = 00.

In this paper we will prove that the Cauchy problem (1), (2) has nontrivial solution
u = u(t,r) € C((0,1]JH'(R*1)) and the solution map is not uniformly continuous. When
we say that the solution map (uo,u1,g9) — u(t,r) is uniformly continuous we understand:
for every positive constant € there exist positive constants § and R such that for any two
solutions u,v of the Cauchy problem (1), (2), with right hands g = g1, g = g2 of (1), so that

2 E(Lbu—v) <96, |laillzir+y <R, llg2llrerty <R, lor — g2ll2mt)y <6,
the following inequality holds
(2" E(t,u—v)<e for VYtel0,1],

where P
Bt 0) = [|0rut, )| [Fogrr + || 50t )l e

Our main results are
Theorem 1.1. Let K, () are positive constants for which

2 2 1
K > 4Q ) m Z 17
_Z/K2_ 2
1-K+Q>>0 is enough small such that % —2V1-K+@Q%>0.
Let also g =0, f € CL(RY), f(0) =0, alu| < f'(u) < blul, a and b are positive constants.
Then the homogeneous Cauchy problem (1), (2) has nontrivial solution u(t,r) = v(t)w(r) €

C((0,1]HY(RY)). Also there exists t, € [0,1) for which exists constant € > 0 such that for
every positive constant ¢ exist solutions u, v of (1), (2), so that

E(1l,u—wv) <39,

and
E(to,u—v) >e.
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Theorem 1.2. Let K, () are positive constants for which

2 2 1
K > 4Q ) W Z 17
1-K+Q*>>0 is enough small such that Koy K797 VIS_A‘QQ —2y1—-K+Q@Q%>0.

Let also g # 0, g € C(RT), g(r) >0 forr >0, g(r) =0 forr >ry, f € CH(R'), f(0) =0,
alu] < f'(u) < blul, a and b are positive constants. Then the nonhomogeneous Cauchy
problem (1), (2) has nontrivial solution u(t,r) = v(t)w(r) € C((0,1]H*(R*)). Also there
exists to € [0,1) for which exists constant € > 0 such that for every pair positive constants
d and R exist solutions u, v of (1), (2), with right hands g = g1, g = g2 of (1), so that

E(l,u—v) <94, |laillezr+y <R lg2llzzire) S R, g1 — g2llz2r+) < 0,

and
E(to,u—v) >e.

The paper is organized as follows. In section 2 we prove theorem 1.1. In section 3 we prove
theorem 1.2.

2. Proof of theorem 1.1.

For fixed ¢ > 1 and v € (0,1) we put

1

= (5 )"

For fixed p > 1,¢>1,v € (0,1) and g € C(R"), g(r) > 0 for r > 0 we suppose that
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the constants A >0, Q >0,a>0,b>0, B>0, K >0, 1< (< « satisfy the conditions

. 1 1 2 b A2 ;
g (1—K+Q2A_% + E) shoAxl >k
1 b7"2
Tkt o — a5 2 0,
a 2br > 0
AT (0K Ta?QZ) — AZB? =
) 1 1 4
i2){ AT A=aKTa?Q?) (3 - 5) ~ wBa-Rree =0
11 1 2 2b 2__1 ;
(3~ &) Tmartaer i — orTenmE — 1 R Melon] 9(7) > 2
(; _ 1) 1 a2y >0
BT« (1 aK+a2Q?)? 247 AB(1 K@) =
- 2— 21—
i3)C 7 2% + 2 ~ + - r+C r <1,
((1 KiQ?)Z A AB(I-K+Q?) ' A (g(1=~)) @ A2(1-K+Q?)2(q(1—)) ¢
L1 a1 _a)y
ia) YoP I aK+a2Q2 445 BT aAT ’
1 1
& TR QP 47 — Fﬁ >0,
2 2
K?>4Q% A> g > 1,
2Q2 K—+/K2— 4Q2
1> >——5—,

1-K+Q*>>0 is enough small such that

.5 \/
Z) 1>ﬂ 2./1 K+Q2>0

2
a < 3,
K—/K2-4Q2—2(1-K+Q?) <f<as
2br2 9
4A8a2(1 aK+a2Q2) A232 - maXrE[O r1] g( ) 0,
. 1 2 1 2 .
i6) 1= K+Q? éAB T—K+Q? A2 + AB) + 77 maxe [0,r1] 9 ) A8}

. 2
17) maXse[o,r] 9(5) < (% - é) %,

where
K — /K2 —4Q? o
r = 5 Q — 1—K+Q2

Example. Let 0 < € << % is enough small,

M_Q /1—K+Q2,

2
Il
W=
Q

|
®
QI
Il
)

g(r) = et(r—r)? for r<m,
0 for r>ry,

K=4+i0 -4

Q2:§+€€20_§62’

a=¢, b=¢é

1—aK+0a2Q%?=1-3K+9Q? = ¥
1-K+Q>=¢c%e.

When ¢g(r) = 0 we put
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fT'l - 1
:{ 0 for

T >,

g 17 (et (D(s) — 2 (0(Dw(s)) ) dsdr  for r <,

and u; = 0. Here v(t) is fixed function which satisfies the conditions
(H1) w(t) € C3[0,00), > 0 for Vit
(H2) '(t) >0 for Vt € [0,
1 t)
(H3 { mlnte[o 1] v(g)

V() — 5gav(t) >

A maxte[o 1] U((

A
0 for t € [0,1].

Bellow we will prove that the equation (1’) has unique nontrivial solution w(r) for which
(r) € C*[0,1], w(r) € Hl[O,rl], lw(r)] < ,42_3 for r € [0,m1], w(r) > 4z for r € [
w(ry) =w'(r1) =w"(r1) =0.

11
a? E} )
Example.
There exists function v(¢) for which (H1)-(H3) are hold. Really, let us consider the
function
(t—1)2 4 4%
3) o(t) =

-1
a

A3

where the constants A and a satisfy the conditions A > 1, £ > 1. Then
1) v(t) € C?[0,00) and v(t) > 0 for all ¢ € [0,1], i.e. (H1) is hold.
2)
A3 ’Ul(l) = 0’
V(=220 YV teo1],
V() =0, o"(1) =0,
consequently (H2) is hold. On the other hand we have

UI/ (t)

B 2
v(t)  (t—1)2
From here

minge(o,1] O

A0S
maXieio,1] - ((t)) < 2_%7
V' (t) — 5au(t) =
i.e. (H3) is hold.

lem (1), (2)

2.1. Local existence of nontrivial solutions of homogeneous Cauchy prob-
Let v(t) is fixed function which satisfies the hypothesis (H1)

— (H3).

EJQTDE, 2007 No. 12, p. 6



In this section we will prove that the homogeneous Cauchy problem (1), (2) has non-
trivial solution in the form

_ ) ow(r)  for r<mr, tel0,1],
u(t’r)_{ 0 for r>r, tel[o,u.

Let us consider the integral equation
® Do
wltor) = I ﬂTlTJrQ? I (W v(g) u(t, s) — s2f (ult, s)))deT,O <r<wr, te]o,1],
’ 0 for r>ry, te]0,1],

where u(t,r) = v(t)w(r).

Theorem 2.1. Let v(t) is fized function which satisfies the hypothesis (H1)-(HS3). Let
alsop > 1, ¢ € [1,00) and v € (0,1) are fixzed and the positive constants A, a, b, B,
Q,K, a > 3 > 1 satisfy the conditions i1)-i6) and f € CH(R'), f(0) = 0, alu| < f'(u) <
blu|. Then the equation (%) has unique nontrivial solution u(t,r) = v(t)w(r) for which
w € C2[0,71], u(t,r) = up(t,r) = uppe(t,r) = 0 for r > ry, u(t,r) € C((0,1]H[0,71]), for
re E,%} and t € [0,1] u(t,r) > 45, forr € {O,n} and t € [0,1] [u(t,r)| < 25

Proof. In [7, p. 303-309,theorem 3.1] is proved that the equation (x) has solution
u(t,r) in the form u(t,r) = v(t)w(r) for which

u(t,r) € C([0,1] x [0,71]);
u(t,r) = r(t,r) =up(t,r)=0 for r>ry and te]0,1],

u(t,r) € C((0,1)B},4[0,71]);
for TEE —} and te[0,1] wu(t,r) >

u(t,r) >0 for te[0,1] and re [
for re {0,7“1} and t€[0,1] |u(t,r)] <.

T_.

In [7] is used the following definition of the B;j’q(M)—norm (v€(0,1),p>1,qg>1) (see [3,

p.94, def. 2], [1])
1
2 q
gy = ([ 7 Awal i)

Apu = u(x + h) —u(z).

where
Let ¢t € [0,1] is fixed. Then

‘ L2([0,00))
r r s ! 2
=o' (rz,Kl,,Jer s (SQ,K;QQ v(g)u(t, s) — s f(ult, s)))dsdT) dr <

P 2

or U
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54 < 1
7 s2-Ks+Q2? — 1-K+Q
rLKlrJrQQ < lleJrQQ for r € [0,71](see [7, Remark, p.300])

here we use that from i5) we have that m < 1 s for s € [0,7],

1 1 m 1 v"(t) 9 2
g/o (1—K+Q2/r (1—K+Q2 trgl[gﬁ o0 lu(t,s)| + s \f(u(t,s))\)dsdT) dr <

here we use that f(0) =0, |f(u)| < |ul?,

Y G S v (1) b
= t 2lult, s))2)dsdr) dr <
_/0 (1—K+Q2/r <1—K+Q2f§[3}ﬁ (1) Ju(t, s)| + 575 u(t, )] ) s T) r <

here we use that |u(t,r)| < - for r € [0,11], t € [0, 1],

3 1 " 1 V() 2 ,b 4 2
<[ (+——s5 Sl )dsdr) dr <
_/0 <1—K+Q2/r (1—K+Q2tren{6a,}ﬁ u(t) Ap + g g dedr) dr <

here we use that maxie|o,1] % < 2—%,

2
1 1 T1 1 2a 2 2b 4
< Jo (1—K+Q2 Jy (17K+Q2 AZAB T T1§A232)d8d7—) dr <

2
3 1 1 4a 2rfb
=T (17K+Q2 (17K+Q2 BB T ATpE)) <

From here

|2 < o0
Or 11L2([0,00))
for every fixed t € (0,1]. Therefore u(t,r) € C((0,1]H'([0,00))). o

Let @ is the solution from the theorem 2. 1, i.e @ is the solution to the equation ().
From proposition 2.1([7]) @ satisfies the equation (1). Then u is solution to the Cauchy
problem (1), (2) with initial data

r r g4
g = I Tz,KlTJer I (SQ,KHQQU”(l)w(s) — szf(v(l)w(s)))dsdT for r <y,
0 for r>rmry,

4

uy = s 7-2_[(17-+Q2 o <52_1§8+ng"’(1)¢0(5) — 82f’(u)v'(1)w(s))d5d7 =0 for r<nr,
0 for r>r,

ug € H'(RY), uy € L2(R*), @ e C((0,1]H[0,71]).

2.2. Uniformly continuity of the solution map for the homogeneous Cauchy
problem (1), (2)

Let v(t) is same function as in Theorem 2.1.
Theorem 2.2. Letp > 1, q > 1 and v € (0,1) are fixzed and the positive constants
a, b, A, B, Q, K, 1 < 3 < « satisfy the conditions i1)-i6). Let f € CY(R'), f(0) = 0,
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alu] < f'(u) < blu|. Then there exists to € [0,1) for which there exists constant € > 0 such
that for every positive constant § exist solutions uy and uo so that

E(l,u1 — UQ) S )
and

E(to,u; —ug) > €.

Proof. Let us suppose that the solution map (uo,u1,g9) — u(t,r) is uniformly con-
tinuous.
Let

1 2 2b
4)  0<e< (5 - 5)3<1 - Q;Jr a?Q? (2A6a2(1 —ZL +02Q?) 62A232))2'

Let also
Uy = QNL, U9 = 0.

Then there exists positive constant § such that
E(l,u1 — UQ) S (S,

and
E(t,u1 —ug) <e for Vtel0,1].

From here, for ¢ € [0,1)

L2([0 00))
ot o ~ ~ 2
(T2 Kr+Q? f (327K3+Q2 v(g)u(t7 S) - s2f(u(t, 8)))d‘9d7) dr >
54 ! B N 2
> fé (TQ_KT+Q2 I (52—K5+Q2 v(g)u(t, s) — s2f(af(t, S)))deT) dr >

here we use that for s € [é,rl} and for ¢t € [0,1] we have that m ;'((1;) (t,s) —

s2f(a(t,s)) > O(see [7, p. 305-306]) and m >0 for r € [0,7],

4

1 o _ _ 2
(TLKlrJrQQ I (SLI?HQQ v(g)u(t, s) — s2f(af(t, s)))dsdT) dr >
1 (% st : v’ (t) ~ 2~ 2
(TLKTJng Ji (32—K3+Q2 mingeo,1] 7 u(t,s) — s*f(a(t, S)))deT) dr >

[V
= olR = g

J1
J1

Y

from (H3) we have that minge(o,) :(()) > 2%

1 1

] 1 B st a . 9~ 2
> — >
= /é (7"2 “Kr+ Q2 /é (32 — K graar(hs) — s Stk ) dsdr) dr =
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/

1 1 4
B 1 Ié] S a 2b~2 2
- /é Ge—w=rs Q’ /1 2 Ks 1 qraarthe) st s))dadr) dr >

here we use that a(t,s) >

s €[0,7q]

1 1 .
A 1 3 s a 1 L 4 ,
> 1 1b 4 .
—/é (rZ_Kr—i—QQ/é <82—KS+Q22A4A2 ﬁ22A2B2)de7) dr >

1
a’

4z for t €[0,1] and s € [é,%}, @(t,s) < gzgz for t € 0,1] and

2 .. .
here we use that M?TQQ is increase function for s € [0,71]. Therefore, for s € [ %} we

have s® > 1
s2—Ks+Q? = a?(1-aK+a2Q?)

B 1 B 1 a 2b 2
> — dsdr ) dr >
_/é (rz—Kr%—QQ/é (a2(1—aK+a2Q2) 2A6 B2A2B2) 5 T) "=
here we use that for r € [0,71] the function m is increase function. Therefore for

1 o?

1 1
T e {573} we have TR0 2 T ok o207

N 9 2b 2
= (B - E) (1 - ozl?+ a?Q? (2A6a2(1 —ZL +02Q?) ﬁQAQBQ))

which is contradiction with (4). e

3. Proof of Theorem 1.2.

3.1. Local existence of nontrivial solutions for nonhomogenious Cauchy
problem (1), (2)

Let v(t) is fixed function which satisfies the conditions (H1), (H2) and (H4), where

A ) a V" (t)
H4 >
(H4) tg[%ﬂ} v(t) — 4A%Y tren[gﬁ(] v(t)

[\
S

<

5"

N

For instance, the function
4
(t—1)2+84 1
o(t) = A3 ¢ )

a
satisfies the hypothesis (H1), (H2) and (H4).
Let us consider the equation
()
u(t,r) = { I WLFQQ m (ﬁ;@? Uv(g)u(t, 5) — s2f(u(t,s)) — 829(5))d5d7',0 <r<r,
0 for r>rmr,
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t € [0,1], where u(t,r) = v(t)w(r).

Theorem 3.1. Let v(t) is fized function which satisfies the hypothesis (H1), (H2),
(H4). Let also p > 1, ¢ € [1,00) and v € (0,1) are fized and the positive constants
A, a, b, B, Q,K, a > 3 > 1 satisfy the conditions i1)-i7) and f € C'(R'), f(0) = 0,
alu| < f'(u) < blul, g € C(RT), g(r) > 0 for ¥r € RT, g(r) = 0 for r > r1. Then
the equation (*') has unique nontrivial solution u(t,r) = v(t)w(r) for which w € C?[0,71],
u(t,r) = up(t,r) = upe(t,r) = 0 for r > ry, u(t,r) € C((0, 1]H1[0,r1]), forr € {é, %} and
t€[0,1] u(t,r) > 43, forre {0,7“1} and t € [0,1] |u(t,r)| < 5.

Proof. In [7, p. 313-316,theorem 4.1] is proved that the equation (¥') has solution
u(t,r) in the form wu(t,r) = v(t)w(r) for which

u(t,r) € C([0,1] x [0, 71]);
u(t,r) = u, ,T)—urr(t ry=0 for r>ry and tel0,1],

(t
u(t,r) € C((0,1}By [0, m1]);
for TEE L and te[0,1] w(t,r

) 2 1
u(t,r) >0 for te[0,1] and r¢€ [ 7“1}
for re {0,7"1} and te€0,1] |u(t,r)] < 5.

Let ¢ € [0, 1] is fixed. Then

2
u
L2([0,00)) )
r r s4 v’
= I (e I (o S ult, s) — $2(f (u(t, ) + g(s)) ) dsdr ) dr <

here we use that from i5) we have that r; < 1, 327;;@2 < liKlJrQQ for s € [0,m],

r2—K1r+Q2 < 1—K1+Q2 for r € [0,71](see [7, Remark, p.300])

<] vl o ”:(())\u(t (1 (ult, ) +(s)) ) dsdr) dr <

here we use that f(0) =0, |f(u)| < |ul?,

1 1 1 1 V" (t) 9, b 9 2
S/O (71—1(%—@2/7» (1 R0 N [ult, s)|+5*(Slult, 5)] +g(8)))dsd7) dr <

here we use that |u(t,r)| < &5 for r € [0,71], t € [0,1], from i7) we have max,.¢(o ] 9(1) <

(-3

1 1 1 1 UH(t) 2 2b 4 , 1 1.2 1 )
< s ———] 1Y R R — <
_/0 (1—K +Q2/r (1—K Q7 0N o) B 12A2B2+T1(ﬁ a) A4)d8d7) .
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here we use that max;c(g,] % < %,

2
r 1 r 1 2q 2 2b_ 4 2(1 1)1

< Jo (1—K+Q2 Jy (1—K+Q2ﬁE+T1§A232 +T1(3—g ﬁ)deT) dr <
3 1 1 4a 2r?b 21 1)21))?

S7'1<1—K+Q2(1—K+Q2 wptEE T\~ a) a < 0o.

From here

|2 <o
Or 11L2([0,00))
for every fixed t € (0,1]. Therefore u(t,r) € C((0,1]H([0,0))). o

Let @ is the solution from the theorem 3. 1. | i.e @ is the solution to the equation ().
From proposition 2.3[7] we have that u satisfies the equation (1). Then @ is solution to the
Cauchy problem (1), (2) with initial data

4

. I TLKlTJrQQ m (SgifﬁerQQv”(l)w(s) —s2f(v(Dw(s)) — 829(8))d8d7' for r<ry,
0 for r>ry,

Nl

I Tz,KlTJer I (SQ,I{;QQ V" (Nw(s) — 32f’(u)v’(1)w(s))dsd7 =0
uyr =19 for r <,
0 for r>ry,

o € HY(R'T), 4 € L2(R1), @ e C((0,1]H[0,71]).

3.2. Uniformly continuity of the solution map for the nonhomogeneous
Cauchy problem (1), (2)

Let v(t) is same function as in Theorem 3.1.

Theorem 3.2. Letp > 1, ¢ > 1 and v € (0,1) are fixred and the positive constants
a, b, A, B, Q, K, 1 < 3 < « satisfy the conditions i1)-i7). Let f € CY(R'), f(0) = 0,
alu] < f'(u) < blul, g € C(RT), g(r) >0 forr >0, g(r) =0 for r > ry. Then there exists
to € [0,1) for which there exists constant € > 0 such that for every positive constants § and
R exist solutions uy, ug of (1), (2) with right hands g = g1, g = g2 of (1), so that

E(Lui —u2) <0, |lgillr2rey S R, lg2llizre) S R, g1 — g2ll2(r+) <6,
and

E(to,u; —ug) > €.

Proof. Let us suppose that the solution map (uo,u1,g9) — u(t,r) is uniformly con-
tinuous. Let

(5)

1 2 2b 1 1,21
O<e< (5‘5)3(1 = (T KT a?Q?) _ﬁ2A2B2_T%<B_5)2ﬂ))2'
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Let also

up = u, u2:0, 9250’ g1 =9,

where g is the function from theorem 3.1. Then there exist positive constants § and R such
that

loillzr+y < R, lg2lleerty < R, lgr — g2llL2(r+) <6,
E(1,u; —ug) <9,
and
E(t,u; —ug) <e for Vtel0,1].
From here, for ¢ € [0,1)

art

LQ([O 00))
! _ _ 2
fg’ (i I (e Sttt ) — S2(f (alt, ) + g(s)) ) dsdr) dr >

4

> [} (e J7 (srier o, 5) — 527 (01, )) + g(5)) ) dsr) >

here we use that for r € {— rl} we have

4 1" t) _ _
o Salt ) — S2F(at,5)) — s2g(s) >
2br2
2 4A6a2(1—ZK+a2Q2) - AQBQ —r{ max,e(o,r,) 9(r) = 0

(see i5)) and for r € [0,7;] we have m >0

zf§(2 7o fl (5 2_;;@2 C0q(t,5) — 2(f(alt, ) + 9(s)) ) dsdr ) dr >
> 7 (e fl (s rirge mineioy 2a(t, ) — s2(f(a(t,5)) + 9(s)) )dsdr) dr >

from (H4) we have that min,c(g ) :(g)) > 15

- /; (s Q /; (= fi Tt — St s) + o)) dsdr) dr >

here we use that f(0) =0, f(u) < 2a?

4

1 1
3 1 B S a _ 2b o 2 2
- [ i Gt 400~ o) ar
here we use that @(t,s) > -z for t € [0,1] and s € [é %} 2(t,s) < gz for t € 0,1] and
<

2
€ [0,71], max,¢o,,] 9(r) (% — é) ﬁ7

( st a 1 1b 4 2<1 1)21

—Ks+Q244% A2 32242B2 '\g o/ At

@l

5 1
Z/é <T2—KT+Q2/é

)deT) dr >
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here we use that 5 is increase function for s € [0,71]. Therefore, for s € [é, %} we

82
s2—Ks+Q

84 > 1
2—Ks+Q2?2 = a?(1—-aK+a2Q?)

have

B 1 B 1 a 2 o1 121 )
> /é (7“2 — Kr+Q? é (a2(1 —aK + QQQQ) 4A6_52A232 —7"1(B—E) m)dsdT) dr >
here we use that for » € [0,71] the function increase function. Therefore for

11
a’ B

1 .
r2—Kr+Q?2 18
o2

1 >
r2—Kr+Q? = 1—-aK+a2Q?

re { } we have

2

1 1,53 2b 1 1y2 1 \\2
= (B - E) (1 - al?+ a2Q? (4A6a2(1 - ZK +a2Q?)  (RA2B? T%(E - 5) ﬁ))

which is contradiction with (5). e
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